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Abstract

Propagation of non-stationary shock waves in a bubbly liquid with a non-Newtonian carrier phase was
investigated numerically. The research is carried out within the one-velocity two-temperature two-pressure
model of multiphase media mechanics. An aqueous solution of polymer was used as a non-Newtonian
carrier phase. It was concluded that the behavior of shock waves in Newtonian and non-Newtonian bubbly
liquids with the same Newtonian viscosity may have fundamental differences. The influence of defining
parameters of the two-phase mixture and wave on the structure of shock waves was examined. The nu-
merical analysis of evolution and attenuation of pulse perturbations was carried out. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The wave dynamics of bubbly systems with viscous and non-viscous Newtonian carrier phase is
developed well enough for the present time (Gubaidullin et al., 1978; Nakoryakov et al., 1990;
Gubaidullin, 1991; Nigmatulin, 1991). However, wave flows of those systems based on non-
Newtonian liquids with complicated rheology (polymeric solutions and melts, suspensions, high-
paraffinaceous, waxy and resinous, tar-content oils, etc.) have not been studied adequately in spite
of their wide incidence in practice. Some problems of the behavior of a bubble in viscoelastic
relaxing polymeric liquid and propagation of acoustic waves in the same liquid with bubbles are
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researched in this domain. These problems were best described by Levitskiy and Shulman (1995).
The problems of dynamics of non-stationary nonlinear waves are not being studied.

This paper investigates the features of propagation of non-stationary shock waves in a non-
Newtonian liquid with gas bubbles. Our intent is to compare the wave behavior in bubbly
mixtures with non-Newtonian and viscous Newtonian carrier phases and to reveal the influence
of defining parameters of two-phase mixture (Newtonian viscosity of solution and density
of liquid, void fraction and size of bubbles, kind of gas, relaxation time, etc.) on the wave
evolution process.

2. Basic equations

In this section we are going to obtain a system of equations, describing the dynamic behavior of
the two-phase mixture mentioned above, taking into account the following assumptions (Gu-
baidullin et al., 1978): the radius of bubbles is many times larger than molecular-kinetic dimen-
sions and many times smaller than the distances at which averaged or macroscopic parameters of
mixture or phases vary essentially; the mixture is monodispersive; interaction, collisions of bub-
bles to one another may be neglected; processes of bubble fragmentation, coagulation and for-
mation of new bubbles are absent; the pressure of gas in bubbles is homogeneous, velocities of
macroscopic motion of phases are equal, the temperature and the density of carrier liquid are
constant, phase transitions are absent.

2.1. The equations of motion of phases and of heat transfer

The continuity equations for gas, liquid and unit bubble and momentum equation at the as-
sumptions mentioned above for non-stationary one-dimensional flow along axis x are as follows:

op; , Opyv 0py | Opyv d o3 _

St wt e o0 ghe) =0 M
dv Op d 0 0

pa‘i‘a—o <&—a+va>. (2)

Here p, p, v are, respectively, the density, the pressure and the velocity of mixture, p%, p,, o, p; are
the true and reduced densities, the void fraction, and the pressure of the ith phase, the subscripts
i =1 and 2 refer to liquid and gas parameters, a is the bubble radius.
The heat influx equation for gas may be written as
duy,  oups dp(z)

pzﬁ_p_gE:”‘h’ T\ = const., (3)

where 7; and ¢, are the temperature and heat influx to a bubble from liquid and # is the number of
bubbles per unit volume of mixture. Within the two-temperature scheme (Gubaidullin et al., 1978)
¢> is given by



A.A. Gubaidullin et al. | International Journal of Multiphase Flow 27 (2001) 635655 637

)\.2N1/l2
2a

where /1, is the gas thermal conductivity and Nu, is the Nusselt number, and it can be expressed
(Nigmatulin, 1991) as

10, Pey< 100,
NM2 =
VPey, Pey, > 100,

¢ = 4na’ (T, — 1),

Ty alwl
Pey = 12(3, — 1) - 2000
71— Do ("
T _ Ak
v =5 7 ZCZ/CUZ-
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Here ng) is the gas thermal diffusivity, w the radial velocity of bubble interface, c,», ¢, the specific
heats of gas at constant pressure and volume and Pe, is the Peclet number.
The gas is assumed to be ideal and the liquid is incompressible

P =057 — DewD, ur =cnl, p) = const.
There are, by definition

pr=o0up], py=00p3, p=p Py o Foa=1,
4
o2 257103"7 p=oupt + oa(py —22/a),

where X is the surface tension of liquid.
2.2. Conditions of simultaneous strain of phases

As a condition of simultaneous strain of phases, a Rayleigh—-Lamb equation for radial oscil-
lations of a bubble in liquid is commonly used. The one generalized to the case of non-Newtonian
liquid was obtained by Levitskiy and Shulman (1995)). It has the following form in a spherical
coordinate system (r, @, ):

00 () _ (00)
p?(ac(ll—v:—l—%wz) +p1—p +272: 2/a 7:()frdr,
da

a )

where ") — 1(??) is the normal stress difference. The stress tensor £ is defined by the rheological

state equation of Maxwell type with the upper convective derivative and the single relaxation time
t. (Astarita and Marrucci, 1974; Levitskiy and Shulman, 1995)

(4)

w =

7= 'Es + fp, ‘Es - 21/]Sé, N + np = Ho,
dz,

R Lo R
Tp + L E—i(rp-e—{—e-rp)] = 2n,e,
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where e is the tensor of strain rate; the point means the internal multiplication of tensors of the
second rank (multiplication of their matrices), 1, 7,1, are Newtonian viscosity of solution (or
zero-shear viscosity), the viscosities of solvent and of polymeric network in solution, respectively;
the subscripts p and s refer to polymer and solvent.

The equations for normal components "), 7(??) are written in the form (Levitskiy and Shul-
man, 19995)

(rr) 2 2
mﬂf(d% +ww):_4 i

p dr P3 =35>
dr(eo) 2 2 ©)
T aw aw
(o) p (po) —
T +Zt< dr T 73 ) = 2n, PRI
- a*w a*w
) = —4 5 o = 205 (6)
The expressions for t0), 7(?¢) can be found from (5) and substituted into (4). They give
dw 3 2X
0 2
4z i S
Pl(“dﬁzW)H P )
S=35,+S5,
—4n t
S,(t) = b —(&=0/n d 8
P() traz(t)/o a(é)W(é) g’ ( )
w
S, = —dn 2~ 9
N )
2.3. The constitutive equation of liquid for radial flow around a bubble
The integral S, can be transformed to the differential equation
ds, 1 2w Ny, w
47 )s =427 10
dt+<tf+a>p t. a (10)

One can see from comparison of (10) and (9) with (5) and (6) that when r=a, S, =
rg”), Ss = "), i.e. the parameters S, and S; characterize the stresses on a bubble interface in
polymer network and solvent, correspondingly (Levitskiy and Shulman, 1995).

Let us analyze, first, the limiting cases of Eq. (10). It will be assumed that ¢, is the characteristic
time of bubble oscillations, which determines the time scale of the process, S, is the scale of stress
oscillations in polymer. Time ¢, can be estimated, for instance, as a bubble collapse time in inertial
Rayleigh regime #, ~ f, = ag+/p},/po. This estimation is valid when the dissipation is less than the
inertia of radial movement of liquid around a bubble, i.e. oscillations of a bubble are possible. The
estimates of terms of Eq. (10) are obtained:
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Small relaxation times. When t, < t, the first and third terms in the left-hand side of Eq. (10),
which contain time derivatives, may be neglected in comparison with S,/z.. On both the right-
hand side and the left-hand side of Eq. (10) there remains one term. These terms must be of the
same order, i.e. S, ~ 'Z—" The following is the approximate expression for stress in polymer

Sp%—417pvgv, t L 1y, (12)
where Egs. (9) and (12) allow one to write the expression for stress in solution as
S:Sp—I—SS%—4110%, t < t,. (13)

Hence (12) and (13) have the same form as for a Newtonian liquid with the viscosity being equal
to Newtonian viscosity of a polymer solution.

Large relaxation times. In the opposite case when ¢, > ¢,, it follows from (11) that one may
ignore the second term S, /7, in the left-hand side of (10) in comparison with the first and third
terms, which involve derivatives. Thus, the following equation is obtained as

ds, w N, w
—P oS =42t >4, 14
dr + a ’ t. a’ > (14)
which taking into account the initial conditions (1 =0: S, =0, a = ao, ) has the solution
2
szz%[(@) —1}, t> 1, (15)
| \a

It corresponds to the nonlinear-elastic returning force. When the bubble radius deviates to a small
extent, (15) may be reduced to the following form:

1, Aa
So~ -4 t.>1,
’ t: ap (16)

a=ay+Aa, |Ala< a.
Note that ) = —2Aa/ay is the longitudinal strain in the liquid at bubble interface, so

s =7 oM

r=a t;

r=a

Expressions (15) and (16) show that in this limiting case, the polymeric network in solution be-
haves as on elastic medium, with the elastic modulus G = #,/t. determining the scale of stress
oscillations S,, ~ 1,/t.. The total stress in solution consists of the elastic component due to
polymer and the viscous one due to solvent:
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Effective gas elastic modulus. 1t is obvious that the elastic stress in polymer will influence the
behavior of a bubble if S, exceeds the increment in gas pressure Ap, in a bubble due to Aa. Let us
analyze this case. The simple polytropic law is as follows:

P2/P = (P(z]/P(z]o)Ka
where « is the polytropic index. Let
P2 =po+Ap, a=ay+Aa, where pyy =pi, |Ap| < pw, |Adl <K ap.

Since p3/pY, = ai/a’, then

Aa Aa
Apy = =3Kpy— = —4G,—,

%o o (18)
63

where G, is the effective elastic modulus of the gas in a bubble. The elastic stress in polymer must
be taken into account if

Sp| = |Apo|, thatis G = G,.

Note that the equilibrium value of pressure p. behind the front of the wave should be used instead
of py in (18) if applied to a shock wave of “step” type.

On the base of the performed analysis it may be argued that a polymeric liquid with bubbles for
two limiting cases mentioned above behaves as a Newtonian bubbly liquid with viscosities #, and
K, correspondingly, i.e. a shock wave might have two limiting structures at varying relaxation
time: a shock wave traveling as in a Newtonian bubbly liquid with the viscosity being equal to
Newtonian viscosity of solution 7,(¢, < t.) and a shock wave traveling as in a Newtonian bubbly
liquid with the viscosity being equal to that of solvent 5,(#, > ¢.). Modeling of polymeric solution
by a Newtonian liquid is possible in these cases if the elastic modulus of polymeric network is less
than the effective elastic modulus of the gas in a bubble.

3. Numerical results

The system of Egs. (1)—(3) and (7)—(10) described above is solved numerically. The structure of
the system differs from that for Newtonian bubbly liquid in one additional differential equation
(10) for the stress in polymer. The latter involves only time derivatives, so the procedure proposed
by Gubaidullin et al. (1978) for numerical modeling of Newtonian bubbly liquids can be applied.
Following this procedure the system after conversion to the Lagrange coordinates is transformed
so that the resulting system consists of one second-order differential equation on a space variable
only, whereas the others are the first-order equations with respect to time. The modified Euler—
Cauchy method is applied to solve the equations on time and the sweep method to solve the
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boundary value problem for the second-order equation at each step on time. A more detailed
description of the method numerical modeling is represented in Appendix A.

3.1. Simulation of stepwise shock wave

This research examines special features of those processes and the influence of defining pa-
rameters of the medium and initial parameters of the wave. The wave of step type is initiated by a
drastic increase in pressure at the boundary of the medium and then the evolution of compression
wave is considered.

Varying relaxation time. One of the most interesting simulation results is shown in Fig. 1, where
the influence of relaxation time #, on structure of shock waves is examined. The profiles of non-
dimensional pressure at x = 20 cm for various values of relaxation time ¢, = 0.001,0.1 and 1 ms
are presented. Parameters of the mixture and the wave are p% =998 kg/m’ 5, =
148 Pas,n,=1mPas, ap =1 mm, oy =2%,T) =293 K, pp = 0.1 MPa, p. = 0.3 MPa. One
can see from Fig. 1 that the amplitudes of oscillations significantly increase when the relaxation

p T [ Raans [ Baans Sanans
Dot : 1
3 A i

i [ VVW ]

21 1, =0i001 ms,

1 .HJ ol b b a | RN |
G 8 9 10 11 12 13 ¢, ms
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J 1, =0l ms ]
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(b) *5 8 9 10 11 12 13 £, ms

Fig. 1. Profiles of pressure in polymer liquid with air bubbles in shock wave for the various values of relaxation time ¢,.
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time increases. A certain increase of oscillation period is also observed. The calculations show that
the profiles of pressure at £, < 0.001 ms practically coincide with each other and with the corre-
sponding curve for the Newtonian carrier liquid with viscosity being equal to Newtonian viscosity
of solution. In the other limiting case, #, = 1 ms, the profiles of pressure coincide as well with the
curve for the bubbly liquid with constant viscosity being equal to the viscosity of solvent. It fully
corresponds to the previous analysis of limiting cases of Eq. (10). Characteristic Rayleigh time for
the calculations discussed is #p = ac.+/pY,/pe = 0.04 ms. Characteristic time can be estimated also
from the plots as reciprocal average cyclic frequency of oscillations ¢, ~ 1 /w = 0.03 ms, which is
reasonably close to Rayleigh time.

Time ¢, separates the limiting profiles in Fig. 1 on ¢z, scale by nearly equal spaces in 1.5 decimal
orders at each side of 7, (0.001, 0.03, 1 ms).

Newtonian and non-Newtonian carrying fluids. The behavior of shock waves in bubbly liquids
with viscous Newtonian and non-Newtonian carrier phases is compared. Such computer analysis
is carried out by the examples of glycerin and aqueous solution of polymer, the average molecular
weight and concentration of which can be selected so that Newtonian viscosity of solution is equal
to the viscosity of glycerin. The defining parameters of polymer solution are
Pl =998 kg/m?, ¥ =0.073 kg/s?, n, = 1.48 Pa's, n, =1 mPa sand #, = 1 ms. We assume that
the density and the surface tension of solution are close to those of the solvent (Ishiguro and
Hartnett, 1992). The parameters of glycerin are p, = 1260 kg/m?, 5y = 1.48 Pa s. The evolution
of “step” type shock wave of intensity p. = 0.15 MPa in these liquids with air bubbles (¢ = 1 mm,
oo = 2%, Ty =293 K , py = 0.1 MPa) is presented in Fig. 2. It can be seen that the behavior of

55 60 x,m

PR "

1.0 b
®) 0.0

Fig. 2. Profiles of pressure in step-type shock wave in polymer solution and in glycerin with air bubbles. (a) Polymer.
(b) Glycerine.
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shock wave in these two cases is fundamentally different: the wave has a monotonous structure in
the Newtonian bubbly liquid and oscillatory structure in the non-Newtonian one. As shown
below, it occurs because in the non-Newtonian liquid, the effective viscosity becomes significantly
lower than Newtonian viscosity of solution due to the oscillations of bubbles. It should be noted
that the velocity of the shock wave in the first case is lower, because the density of glycerin is
greater than that of the polymeric solution.

3.2. Simulation of nonlinear compression pulses

The character of damping of nonlinear compression pulses is studied. The results of compu-
tational investigation are illustrated by the example of compression waves with the initial semi-
sinusoidal form. The picture of damping the same initial waves (intensity p. = 0.3 MPa, initial
duration of pulse is 10 ps) in the non-Newtonian liquid (polymer solution, #, = 0.1 ms, other
parameters are as in Fig. 1) and in the Newtonian one (glycerin) with air bubbles is presented in
Fig. 3. It may be noted that the character of damping varied, namely, in the non-Newtonian
bubbly liquid it comes less intensively. It occurs due to the above-mentioned decrease of effective
viscosity in the non-Newtonian liquid, which becomes much lower than its Newtonian viscosity,
that is the viscosity of glycerin.

Let us inspect now how the value of relaxation time in polymer can influence the damping of
pulses. We will consider the propagation of semi-sinusoidal pulses of different duration but of the
fixed intensity 0.3 MPa in bubbly mixtures with various carrying phases: water, glycerin and
aqueous polymer solutions (7, = 1.48 Pa s, n,=1 mPa s, pJ, = 998 kg/m?®) with different re-
laxation times. Gas is air, g = 1 mm, oy = 0.5%, py = 0.1 MPa, T, = 293 K. In Fig. 4 there are
the integral damping curves of pulse disturbance of initial duration 1 ms in aqueous polymer
solutions. One can see that with the relaxation time growing, the damping decreases. At the
beginning of propagation, the pressure in the medium is higher than in initial pulse — this am-
plification is due to the effect of radial inertia. The analogous damping curve calculated for

3.0

1 non-Newtonian
2.5

————— Newtonian

\/
0.00 0.02 0.04 0.06 0.08

Fig. 3. Damping of compression pulse in non-Newtonian and Newtonian liquids with air bubbles.
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Fig. 4. The integral damping curves for semi-sinusoidal pulse in aqueous polymer solution with air bubbles for various
relaxation times ¢,.

air-water mixture fully coincides with the dotted line (¢, = 1 ms) and that one for air—glycerin
mixture does this with the dashed line (¢, = 0.01 ms). Thus, for pulse disturbances as for the
stepwise shock waves, the conclusion remains true that in the limiting cases, when ¢ > ¢, or
t. < t,, the polymeric carrying phase behaves as a Newtonian liquid with the viscosities #, and #,,
respectively. This is true for the pulse disturbances independently on their initial duration.
Then we studied the influence of defining parameters of mixture on the pulse shock wave. Fig. 5
shows pressure profiles of the same damping pulse as in Fig. 4 but in different medium
(no=1.48 Pas, n,=1mPas, ¢, =0.1 ms) with air bubbles (ap = 0.1 mm, oy = 1%, py = 0.1

IIII!IIlIIIIIIIIIII}IIIIIIIYI

P/py

t=1ms

3.0

2.0

0.0 0.1 0.2 03 0.4 0.5 x,m

Fig. 5. Damping of semi-sinusoidal pulses in polymer solutions with air bubbles with different densities of carrying
phase.
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MPa) at two values of carrying phase density p% = 998 kg/m* as in water (dotted lines) and
P9, = 13546 kg/m? as in mercury (solid lines). It can be seen that the damping increases with the
increase of density, which can be explained by the growth of thermal dissipation. In addition, the
form of propagating pulses changes: they have a look of oscillating wave in one but a soliton look
with an oscillating tail in the other mixture with a heavier liquid. Further calculations have shown
that the influence of defining parameters of mixture and initial pulse (bubble radius, density and
viscosity of carrying phase, duration of pulse) on the wave propagation in a polymeric bubbly
liquid is qualitatively the same as in a Newtonian one. Non-Newtonian properties show them-
selves when the values of relaxation time are close to the characteristic time of bubble oscillations.

4. Analysis and discussion
4.1. Analysis of linear bubble oscillations

As it is known (Nigmatulin, 1991), the oscillatory profiles in the shock waves propagating
through bubbly liquids appear due to bubble oscillations. To understand better the processes
which might occur, a more thorough harmonic analysis of dynamic characteristics of a non-
Newtonian liquid around an oscillating bubble will be carried out. Expressions for complex
amplitudes can be obtained from Egs. (9) and (10) in case of harmonic oscillations of bubbles with
small real amplitude Aa > 0

a=ap+ Aa-exp(int), Aa < ay. (19)
The stresses S, S; will be found as

S = S, exp(iwt), k =p,s. (20)
The velocity of the bubble interface w may be written as

W = iwAaexp(iont),

i.e. the amplitude is

then
w_ ioAa exp(lvy) ~ w22 exp(iwt),
a ap+ Aa-exp(iwt) o
1.€.
W * . Aa
(%) A .

By substituting (19)—(22) into (10) and (9), one can obtain the expressions for the amplitude of
stress in polymer S; and in solvent S;
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St =4 i 23

p Ty ay 1 +1iwt, (23)
A

St = —dpio—. (24)
ao

The last expression is a purely imaginary number that reflects the viscous response of the New-
tonian solvent. The amplitude of the total stress is

. Aa n
S _Sp—l—SS— 1a)a0<1 itr+ns> (25)

The real and imaginary parts of S; = S, +iS; have the following form:
_4’7_p & (tfw)z
to a0 1+ (tw)”’
wAa 1

St = 4y P2 27
P o ao l—l—(l,w)2 (27)

S =

b (26)

which describe the elastic and viscous responses of the liquid to the strain, respectively. Their ratio
is

S/
L2 —to~t/t. (28)
S )
p
i.e. when t, < t,(t,w < 1) the imaginary part predominates
. wAa
A zS;)’ ~ —dn, ot (29)

and when ¢, > 1, (¢, > 1), the real part predominates
Ny, Aa
. ap '

Note that (29) and (30) are agreed with viscous and elastic limits (12) and (16).

S; %S]’D%—4

(30)

4.2. Complex viscosities and moduli

The coefficient of the complex dynamic viscosity at small oscillations of a bubble in non-
Newtonian liquid can be introduced in the same manner as for small shear oscillations (Ferry,
1980). In the Rayleigh—Lamb equation, the viscosity of a Newtonian liquid 7y is provided by the
term

Sn = —4dnyw/a.
And the complex amplitude is

. a
Sy = —4nio—,
ao
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thus
__ S
= —4iwAajay

We may introduce the complex dynamic viscosity in a way similar to that in the last expression

S*
* — A/ e — 31

T —4iwAa/a (31)
Here #' is the real component of the complex viscosity corresponding to the viscous response and
n” is the imaginary component corresponding to the elastic response.

Note that the strain rate of an incompressible liquid for the radial flow around a bubble is

_0v. 2o
o

and its complex amplitude at bubble interface due to (22) is

€

. Aa
| = —2in-2
r=a ap
Thus, since § = "¢],_,,
. T(rr)*
= 2et ’

 lr=a

1.e. such introduction of the complex viscosity is natural.
For a polymeric liquid with single relaxation time from (24)—(27), we shall have

* TIp
—_ 32
=17 it.o s (32)
. ", , Mot
SR R 33
1 1+ (tra))2 Mo 1+ (l,co)2 (33)

The expressions (33) agree with the expressions for components of the complex dynamic viscosity
at periodic shear in Maxwell liquid with single relaxation time, except the additive to the real
component corresponding to the solvent viscosity.

The plot of the dynamic viscosity components 1" and n” normalized to 5, against f,o at
ns/ny = 0.001/1.48 is presented in Fig. 6 on a logarithmic scale. It is seen that the real component
of viscosity #' monotonously decreases from Newtonian viscosity of solution 7, to the viscosity of
solvent .. Curve i’ approaches to the horizontal asymptote n = 5, proportionally by 1/ (tra))2
while increasing ¢, .

The imaginary component of the complex dynamic viscosity #” increases proportionally to #.w
from zero to maximum 5" = #,/2 at t., = 1, then decreases approaching zero as 1/(t.w). It does
not influence the structure of the wave, since the corresponding dynamic elastic modulus
G' = on"(G* = G +1G" = iwn*) is significantly lower than the reduced elastic modulus of gas in
bubbles G, (18), the dependence of which on 7. is shown in Fig. 6 via reduced imaginary viscosity
of gas
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Fig. 6. The components of complex dynamic viscosity at bubble oscillations in Maxwell liquid vs. frequency w mul-
tiplied by relaxation time ¢..

" G, 3
ﬂg(fra’) = Eg = Zyzpetr/(trw)

at various values ¢, = 0.001, 0.1 and 1 ms.

From considered figure and formula (32), one can see that frequency dependencies of dynamic
modules (viscosities) on ¢, at the radial oscillation of bubbles within the Maxwell model have the
same form as at periodic shear. Thus, the data about the spectra of dynamic modules or viscosities
obtained by routine methods at periodical shear may be used for approximate analysis and es-
timations of parameters of bubble oscillations in real polymeric solutions.

4.3. Discussion of simulation results

The value of the viscosity realizing at bubble oscillations in polymeric solution in the shock
wave shown in Fig. 2(a) is marked on the curve ' by point I)'. This value is an order of two less
than Newtonian viscosity of solution. It causes the appearance of oscillations in the shock wave
traveling in the bubbly liquid with non-Newtonian carrier phase, unlike a Newtonian liquid with
viscosity 1, (Fig. 2(b)).

The plot of viscosity #' allows to interpret qualitatively the results of calculations illustrated in
Fig. 1. The points 4’, B’, C’ on curve 5’ correspond to relaxation times and frequencies of bubble
oscillations for the profiles a,b,c (Fig. 1). It should be noted that for small relaxation times
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t.o — 0 (point A’), the viscosity realized is 7, and the waveform coincides with the waveform in
the Newtonian liquid with viscosity 7,. For high relaxation times ¢, — oo (point C’), the viscosity
of the non-Newtonian liquid is close to the viscosity of solvent #, and the waveform as in the
Newtonian liquid with viscosity #, is realized. The point B’ corresponds to curve b (Fig. 1) and
effective viscosity #’ lies between 1, and 7. Since this case is rheologically nonlinear, the profile of
the wave in mixture with Newtonian carrier phase with the same viscosity ' does not fully co-
incide with curve b. The simulations show that even if in some moment of evolution, the con-
figurations of waves in non-Newtonian and Newtonian bubbly liquids with “effective” viscosity
coincide, in the other moment of time they may be different.

The values of imaginary component of the viscosity corresponding to the wave profiles a, b, ¢
(Fig. 1) are marked on curve " (Fig. 6) by points 4”, B”,C". The points 4,, B,, C, show corre-
sponding values of 1, and as one can see from Fig. 6 they lie significantly higher than points
A" B",C". They have approximately equal ordinates, that is the consequence of weak dependence
of frequency of bubble oscillations in a shock wave on time of stress relaxation.

Effective thermal viscosity. It is known (Gubaidullin et al., 1978) that for liquids of low viscosity
with fairly large bubbles, the main dissipative mechanism at bubble oscillations, which determines
the evolution of the shock wave, is heat transfer between gas and liquid. To compare the con-
tribution of this mechanism with dissipation due to viscosity of liquid one can use the effective
thermal viscosity (Nigmatulin, 1991). For the results in Figs. 1 and 2, the effective thermal vis-
cosity estimated is approximately u(” = 0.06 7,. This was calculated with the formulas:

(T)
(T _ (1) % | De Vo
U " = Hy a_ Ty
0\ Do vy,
m _ 3(n—1) (T) 1 [3y,p0
py === plag\/ vy @y, @y =— :
0 4/2 ! 20 ap \| P}

where a. and vg) were used as adiabatic estimations of values behind the wave front

de = aO/(pe/pO)l/Gwa
T T 1/y
v = v/ (pe/po)",

and o, ~ 3.2 x 10* 1/s taken from Fig. 1. From Fig. 6, one can see that when the relaxation time is
great, the evolution of wave is determined by thermal dissipation because #'(C') < (V. In the
other cases, the role of viscosity is comparable to the effect of inter-phase heat transfer (point A’
and B’). In general, this relation varies. It depends on the time of stress relaxation and Newtonian
viscosity of solution. This is confirmed by computer simulations made for mixtures with a dif-
ferent kind of gas in bubbles (air, carbon dioxide, helium, etc.).

5. Conclusion

The propagation of non-stationary shock waves in a bubbly liquid with a non-Newtonian
carrier phase was investigated. A mathematical model describing the dynamic behavior of a
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bubbly mixture with the non-Newtonian carrier phase was developed. The main conclusions are

as follows:

1. The behavior of the shock wave in bubbly liquids with Newtonian and non-Newtonian carrier
phase is fundamentally different: the wave may have a monotonous structure in a Newtonian
bubbly liquid but an oscillatory structure in a non-Newtonian one with the same
Newtonian viscosity. It occurs because the reological losses may become much lower than
the Newtonian viscosity due to the oscillations of bubbles.

2. Modeling of a polymeric bubbly liquid by a Newtonian one with “effective’ viscosity so that
the behavior of shock waves in these bubbly liquids is absolutely the same, is impossible in gen-
eral case. But the polymeric bubbly solution can behave as a Newtonian bubbly liquid in two
limiting cases:

(a) If the time of stress relaxation is much less than the time scale of bubble oscillations, then
the behavior is like that of the Newtonian liquid with the viscosity being equal to Newto-
nian viscosity of solution.

(b) In the opposite limit, i.e. when the relaxation time is much greater than the time scale,
the behavior is like that of the Newtonian liquid with the viscosity being equal to that of the
solvent. This limit is purely realized only if the elastic response of polymer network is neg-
ligibly small as compared with that of the gas in bubbles; otherwise the polymer elasticity
can change the behavior.

3. The attenuation of shock pulse in a non-Newtonian bubbly liquid is less than in a Newtonian
one with viscosity being equal to Newtonian viscosity of solution.

4. The relation between thermal dissipation and dissipation due to viscosity of the carrier liquid is
a variable value and it is defined by the time of stress relaxation and Newtonian viscosity of
solution.

5. The frequency dependencies of dynamic modules (or complex viscosities) when radial oscilla-
tion of bubbles in the non-Newtonian liquid takes place, have the same form as in the case with
periodical shear.

Acknowledgements

This work was supported by the Council on Program for State Support of Leading Scientific
Schools (Grant No. 96-15-96001).

Appendix A. Method of numerical modeling

The problem of a one-dimensional non-stationary flow of a single-velocity medium may be
reasonably solved in Lagrangian coordinates (r,¢) (Gubaidullin et al., 1978; Nigmatulin, 1991),
where r is the distance from a particle to the origin at initial time ¢ = 0. The parameter values at
t = 0 are denoted by a subscript 0. In particular, p, = p,(r) is the mixture density at # = 0. The
current position of the medium particle is characterized by the Eulerian coordinate x (r,¢), so that

ax_@ Gx_
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As a result of the assumed simplifications, the system of Egs. (1)—(3), (7)—(10) of motion for a
monodisperse mixture of an incompressible liquid with gas bubbles in the absence of phase
transitions in the framework of a single-velocity two-temperature approximation assumes the
following form in Lagrangian variables:

Op; | pip Ov 0py | pop QU
e s =0, =0 (p=p+p),

o p, or o p, or
0a O 0 0
W= 6t( 9a°) =0, @ = Pz l_p_(}’ P! = const.,, p; = p!,
W _p—p—2%/at+S sz, (A2)
T i 2
w  0S 1 2w N, w
= = 4 —. 2 4 = _4° 7
S Sp+SS7 Ss Vlsa, at + <[t+ 4 >Sp tr a,
oo 120
a‘i‘po a]: 0, P = D1 +O€2(]?2 —22/61),
oh 3(7’2 1)

aijuz(Tl Tz)—S(’))z— I)K, T] = T():COHSt.,
a

o - 2aicnpd
P = PR To.

The generalized Rayleigh—-Lamb equation (the fifth differential equation) may be transformed
identically to a form in which, instead of average pressure p;, the reduced pressure p appears
0 —p—-2X 3 S
PR i el /"_fw2+fo. (A.3)
ot P 2 P
With the prescribed physical properties of liquid and those of gas (adiabatic index y,,, gas con-
stant R,, coefficient of heat conductivity 4,), and also with the given parameter of interphase heat
exchange Nu,, and in the presence of initial and boundary conditions, the represented system of
equations is closed.

In connection with the condition of incompressibility, we shall perform some identical trans-
formations. The first two mass-conservation Eq. (A.2) of the system may be represented as

% oclpav _0 Oy, 0y apg oczp@v

—+ === =0
T TR o
whence, upon summing these two equations, we obtain
s pp O _
ot  p, Or
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we obtain that the longitudinal deformation of mixture with an incompressible continuous phase
takes place only due to the bubble radial deformation

v 3py aw

— = A4
o p a (A4)
In this case, equations governing variation of both mixture density and bubble volumetric con-

centration may be written as

op  pPov 3,%2% Oy oup Qv 3oyopw

- _ 3,2 Z_r_ A5
ot po Or Pm o py Or a (A5)
The relation between the Lagrangian and Eulerian variables is given as
l@:i@7 dap _ 33 (A.6)
pOx p, Or dt ot |,

Let us differentiate both the momentum equation with respect to r (recall that, p, = p,(r)), and
the continuity Eq. (A.4) with respect to ¢

% 1 &% 1 dp, op

7o p o gt dr o
v w Oy o OW  ow Op oLw Oa
aor P pa Ot pa Ot p*a Ot pa* dt)’
These two expressions in the domain of continuous motion may be set equal to each other. If, in

this case, the time derivatives in the last equation are replaced by their values in accordance with
both (A.5) and equations of radial motion, we obtain

(A7)

1 dp, 3p7 o
=—— L=—"%-—-=5
py dr p) ca’py

——K—r—Lp:M7 K(r)
(A.8)

w2
5 +—0—|—3—+2w2}.
o107 Pi 2

Thus, the condition of incompressibility of continuous phase, as well as in hydrodynamics of a
single-phase incompressible liquid, led to a second-order differential equation which contains
derivatives with respect only to the spatial coordinate. This equation makes it possible to de-
termine the pressure distribution at any point in time provided the remaining parameters
(S, 00,a,w, and p,) are prescribed at the same point in time.

It should be kept in mind that pressure p distribution and velocity v distribution at each point in
time, including ¢ = 0, are not independent variables because of the incompressibility of the con-
tinuous liquid. The p distribution is determined from the above-indicated boundary-value
problem in terms of distributions of ¢, a, w, .S and p, and also in terms of boundary conditions on
the ends » = (0,L), and the distribution of velocity (v) is found from Eq. (A.4), or from the
momentum equation. The variation of a,,a, w, S and p, in time is defined by differential equations
(containing only time derivatives) following from Egs. (A.2) and (A.5).
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Let us introduce dimensionless variables denoted by bars

_i:&7 azia E:ia wzlv )_C:iv TIZT;/TO7 ﬁ?:p?/p?(ﬁ
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(A.9)
Co=2 (C— AR L= )
10 — "~ > * T 0 o s Lo — ’
C, P? Vv %10%20 10220
. A2 X o
W*:ao/t*, t*:ao/c*, lo =~ = )
2 %2 0 agpl,C (A.10)
5 .
ZE‘) =—), S.=po-
aoppo

To facilitate both the analysis and solution of the system of equations being discussed, we shall
use dimensionless variables (A.9) together with parameters (A.10) denoted, as before, by a bar
(P, p, Py, a); the latter are determined as a ratio of parameters corresponding to their characteristic
values (scales) designated by a subscript 0. Some fixed values (P, p!, p3,, o), being characteristics
for distributions of p, p,, p9, and « at the initial time 7 = 0, are chosen as scale factors. The latter,
for convenience, are selected so that they satisfy the conditions of equilibrium

P = pio+22/ay, 0% = pu/(ReTp). (A.11)

As before (see (A.9)), the equilibrium speed of sound C,, = C, is chosen as the inherent velocity of
the longitudinal motion, and the speed C, is chosen as the inherent velocity of radial motion near
bubbles. The linear scale L, is adopted the same as in (A.9). Accordingly, the time scale factor ¢, is
selected as

_t r L, aqa
[:—7 = — th=—=—]).
to L, C, C,

As a consequence, the system of equations may be reduced to the following form (let us drop the

|

C 9

sign above dimensionless variables)
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Note that in the case of one-dimensional flow with plane waves, the velocity of the medium
appears only in the second Eq. (A.4); therefore, to calculate it on each step of integration
with respect to time is not necessary; and, in cases when the v distribution must be calculated,
it is better to do it for each time interval of integration following the computation of p
distribution based upon the momentum equation which in dimensionless variables is written in
the form

ov ol op
o p, or

The obtained system consists of six differential equations, each of which contains only a single
derivative with respect to one of the coordinates (r or 7). The first equation of the system is in-
tended for determining the reduced pressure at an arbitrary time using the known fields of the rest
of the parameters; the remaining equations describe the laws of variation of Lagrangian particles
of the medium in time.

For numerical integration of the obtained system of equations, we shall divide the selected
volume of the medium by points » =7, (i = 1,2,...,n) into n material particles: the values of all
sought functions we determine at points » =r; (i = 1,2,...,n). Then, the last five differential
equations in partial time-derivatives of variables a,w, Sy, T>, v are transformed into 5» ordinary
differential equations with respect to time, for whose numerical integration, the modified Euler—
Cauchy method may be conveniently used. Corresponding difference equation can be written in
the form

(@) = (@, + ()
(@) = (@) + [(n) n (H,-);;} At / 2.

Here n and m superscript and subscript correspond to the parameters in m — sites of difference
network at time moment n; IT, = IT,(®;); At is step of integration on time.

To find the pressure p values at points » = r; at each fixed point in time, a linear (for p)
boundary — value problem must be solved for the first differential equation (with respect to r) of

the second order with boundary conditions

op L 0p
— —K——Lp=—M, 0 L
or? or P ’ <r<d

10p(0.0) + 1 2(0,0) = Yy ),

0
dop(1.1) +d 2L (1,0) = v (1)
To facilitate the solution of this problem the sweep method is advisable, in accordance to which
the boundary-value problem is reduced to the solution of set of linear algebraic equations (the
superscript n related to the network function will be dropped) by means of approximating the
derivatives with respect to r by central differences
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plnfl_Ampm_‘_Bmperl:F;n, m:1a27"'7s_17
Po = Kip1 + 1y,
Ps = Kaps—1 + 1.

The sweep method consists of two steps — the direct and reverse ones. The direct step consists in
calculating sweep coefficients ¢,, and f3,,:

5,,,“:%, ﬂmﬂz%, =1,2,...,s—1,
or=x1, Pr=nmn.
The reverse step consists in solving the problem
_ Kaf+m

s — 1 — K255 y  Pm = 5m+1pm+1 + ﬁm+la

m=s—1,s—2,...,0.

The advantage of the sweep method is the small number of algebraic operations and the low
sensitivity to the error of calculation. It should be noted, for comparison, that the shorting
method is inapplicable in this case because of its instability.

References

Astarita, G., Marrucci, G., 1974. Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London.

Ferry, J.D., 1980. Viscoelastic Properties of Polymers. Wiley, New York.

Gubaidullin, A.A., Ivandaev, A.I., Nigmatulin, R.I., 1978. Nonsteady shock waves in gas-liquid mixtures of bubbly
structure. J. Appl. Mech. Tech. Phys. 19, 204-210.

Gubaidullin, A.A., 1991. The peculiarity of nonlinear waves evolution in bubbly liquids. In: Physical Acoustics.
Fundamental and Applications, Plenum, New York, pp. 347-351.

Ishiguro, S., Hartnett, J.P., 1992. Surface tension of aqueous polymer solutions. Int. Comm. Heat Mass Transfer 19,
285-295.

Levitskiy, S.P., Shulman, Z.P., 1995. Bubbles in Polymeric Liquids: Dynamics, Heat and Mass Transfer. Technomic
Publishing A G, Bassel, Switzerland.

Nakoryakov, V.E., Pokusaev, B.G., Shreiber, I.LR., 1990. Wave Propagation in a Gas-Liquid Media. CRC Press, Boca
Raton, USA.

Nigmatulin, R.I., 1991. Dynamics of Multiphase Media. Hemisphere, New York.



